초록 |
EU의 REACH 제도 도입에 따라 각종 화학물질에 대한 독성 및 활성 정보 확보를 위해 화학물질의 분자구조 정보를 기반으로 화학물질의 독성 및 활성을 예측하는 정량적구조활성관계(QSAR)에 대한 연구가 최근 활발히 진행되고 있다. QSAR 모델에 사용되는 분자표현자는 매우 다양하기 때문에 화학물질의 물성 및 활성을 잘 표현할 수 있는 주요한 분자표현자를 선택하는 과정은 QSAR 모델 개발에 있어 중요한 부분이다. 본 연구에서는 화학물질의 분자구조 정보를 나타내는 주요 분자표현자의 통계적 선택 방법과 부분최소자승법(Partial least square: PLS) 기반의 새로운 QSAR 모델을 제안하였다. 제안된 QSAR 모델은 130종의 폴리염화바이페닐(Polychlorinated biphenyl: PCB)에 대한 분배계수(log P)와 14종의 PCBs에 대한 반수 치사 농도(Lethal concentration 50%: $LC_{50}$ ) 예측에 사용되고, 제안된 QSAR 모델 예측 정확도는 기존의 OECD QSAR Toolbox에서 제공하는 QSAR 모델과 비교하였다. 관심 화학물질의 분자표현자와 활성정보 간의 높은 상관관계를 갖는 주요 분자표현자를 선별하기 위해서, 상관계수(r)와 variable importance on projections (VIP)기법을 적용하였으며, 화학물질의 독성 및 활성정보를 예측하기 위해 선별된 분자표현자와 활성정보를 이용해 부분최소자승법(PLS)를 사용하였다. 회귀계수( $R^2$ )와 prediction residual error sum of square (PRESS)을 이용한 성능평가결과, 제안된 QSAR 모델은 OECD QSAR Toolbox의 QSAR 모델보다 PCBs의 log P와 $LC_{50}$ 에 대하여 각각 26%, 91% 향상된 예측력을 나타내었다. 본 연구에서 제안된 계산독성학 기반의 QSAR 모델은 화학물질의 독성 및 활성정보에 대한 예측력을 향상시킬 수 있고 이러한 방법은 유독 화학물질의 인체 및 환경 위해성 평가에 기여할 것으로 판단된다. |