초록 |
주성분분석(Principal component analysis, PCA)은 고차원 변수들 사이의 복잡한 상관성 구조를 더 낮은 차원으로 단순화하여 상관성의 구조를 쉽게 설명하기 위한 다변량분석기법으로 뇌영상 분석에서 자주 사용되는 방법이다. 주성분분석의 기본개념은 서로 직교하는 변수들의 선형결합을 통해서 원래의 뇌영상 자료가 가지고 있는 전체정보를 최대한 설명할 수 있는 서로 독립적인 새로운 변수들을 유도하는 것이다. 뇌영상분석에서 주성분분석의 효율성과 유용성을 알아보기 위해서 C[11]-PIB 영상을 이용하여 분석하였다. 대상 및 방법으로는 평균나이가 같은 9명의 정상인, 10명의 알츠하이머/경도인지장애환자들의 C[11]-PIB 영상을 이용하였다. PET-CT 장비로는 Biograph 6 Hi-Rez (Siemens-CTI, Knoxville, TN)를 영상을 획득하였고 9.6 MBq/kg C[11]-PIB를 정맥주사 한 후 40분 후에 20분 동안 3D acquisition mode로 방출영상을 얻었다. Attenuation map은 X-ray CT scan을 이용하여 재구성하였다(130 kVp, 240 mA). PIB template을 만들기 위해서 정상인에서 3T MRI T1-weighted 영상을 동시에 얻었다. 주성분분석을 위한전처리과정으로서 공간정규화 및 공간편평화를 SPM8을 이용하여 실시하였고 주성분분석은 Matlab2012b를 이용하여 분석하다. 결과는 주성분분석을 통해서 서로 독립적인 주성분영상들을 얻을 수 있었다. 주성분분석을 통해서 얻어진주성분영상은 C[11]-PIB brain PET 영상의 패턴을 몇 개의 주성분으로 단순화 할 수 있었으며 주로는 neocortex를 변동 나타내는 영상, white matter의 변동을 나타내는 영상 그리고 pons등 deep brain의 변동을 나타내는 영상 등으로 단순화되었다. 결론으로는 주성분분석은 C[11]-PIB brain 영상을 단순화하여 영상의 패턴을 해석하는데 매우 유용하였다. 이러한 주성분분석은C[11]-PIB영상 분석뿐만 아니라 뇌의 포도당 대사를 측정하는 FDG-PET 또는 뇌기능영상등의 다변량분석 방법으로서 그 적용범위가 클 것으로 기대된다. |