저자(한글) |
Gil-Ley, Alejandro,Bottaro, Sandro,Bussi, Giovanni |
저자(영문) |
|
소속기관 |
|
소속기관(영문) |
|
출판인 |
|
간행물 번호 |
|
발행연도 |
2016-01-01 |
초록 |
The computational study of conformational transitions in nucleic acids still faces many challenges. For example, in the case of single stranded RNA tetranucleotides, agreement between simulations and experiments is not satisfactory due to inaccuracies in the force fields commonly used in molecular dynamics simulations. We here use experimental data collected from high-resolution X-ray structures to attempt an improvement of the latest version of the AMBER force field. A modified metadynamics algorithm is used to calculate correcting potentials designed to enforce experimental distributions of backbone torsion angles. Replica-exchange simulations of tetranucleotides including these correcting potentials show significantly better agreement with independent solution experiments for the oligonucleotides containing pyrimidine bases. Although the proposed corrections do not seem to be portable to generic RNA systems, the simulations revealed the importance of the alpha; and zeta; backbone angles for the modulation of the RNA conformational ensemble. The correction protocol presented here suggests a systematic procedure for force-field refinement. Graphic Abstract ACS Electronic Supporting Info |
원문URL |
http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=NART75752600 |
첨부파일 |
|