초록 |
감성은 학습, 행동, 의사결정, 상호대화를 포함한 인간의 일상생활에 중요한 요소이다. 본 논문에서는 시스템의 복잡도를 줄이기 위하여 생체신호로부터 최소한의 중요한 특징만을 추출하여 사용하는 감성 분류기를 설계하고자 한다. 생체신호는 맥파, 피부온도, 피부전도도, 뇌파신호(전두엽, 두정엽)를 사용하였으며, 4가지 감정(보통, 슬픔, 공포, 행복)은 영화 관람을 통하여 유도하였다. 측정한 생체신호로부터 추출한 24개의 특징으로부터 최적의 특징 집합의 결정은 서포트벡터머신 기반 적합도 함수를 사용하는 유전알고리즘을 적용하였다. 최적의 4감정 분류 정확도는 96.4%이었으며, 서포트벡터머신만을 사용하였을 경우보다 17% 높았다. 선택된 최소에러 특징은 맥파 심박변이도의 평균, NN50, 맥파 유도 맥파 전달 시간의 평균, 피부전도도의 평균과 두정엽 뇌파의 ${ delta}$ , ${ beta}$ 주파수 대역에너지였다. 실험을 통하여 두정엽 뇌파, 맥파, 피부전도도의 조합이 고정밀 감정 장비에 적합하였으며, 79% 성능을 보인 맥파와 피부전도도의 조합이 간단한 감성장비에 적절하게 적용할 수 있다. |