기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

좌최장일치법과 HMM을 결합한 경량화된 한국어 형태소 분석

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 인지과학 = Korean journal of cognitive science
ISSN 1226-4067,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 강상우,양재철,서정연
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2013-01-01
초록 본 논문에서는 제한된 자원을 사용하는 기기에 적합한 경량화된 한국어 형태소 분석 및 품사 부착 방법을 제안한다. 관련된 초기 연구로는 규칙에 기반을 둔 방법들이 적용되었으나 최근에는 통계에 기반을 둔 방법들을 중심으로 연구되고 있다. 계산 처리 능력과 사용 가능한 메모리가 제한되는 환경에서는 규칙에 기반을 둔 방법보다 상대적으로 많은 자원을 사용하는 통계에 기반을 둔 방법을 사용하여 형태소 분석 및 품사 부착을 수행하기에는 한계가 있다. 본 논문에서는 기존의 규칙에 기반을 둔 형태소 분석 방법인 좌최장일치법을 개선하여 형태소 분석을 수행하고, 통계적인 방법인 hidden Markov model을 축소하여 형태소 품사 부착을 수행한다. 제안하는 방법은 기존의 hidden Markov model을 사용한 시스템과 유사한 성능을 보여주며 소량의 메모리 사용과 월등히 빠른 속도로 형태소 분석 및 품사 부착을 수행할 수 있다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201330951779643
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 형태소 분석,품사 부착,좌최장일치법,모바일 기기,POS tagging,left-longest-match-preference model,Simplified hidden Markov model,morphological analysis,limited hardware resources,HMM