라플라스 분포 기반의 VaR 측정 방법의 적정성 평가
기관명 | NDSL |
---|---|
저널명 | 한국데이터정보과학회지 = Journal of the Korean Data Information Science Society |
ISSN | 1598-9402, |
ISBN |
저자(한글) | 변부근,유도식,임종태 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2013-01-01 |
초록 | VaR (value at risk)는 주어진 신뢰수준에서 일정기간 동안 발생할 수 있는 최대손실의 기대치를 나타내는 것으로, 현재 금융기관들의 대표적인 위험관리 수단으로 사용되고 있다. 기존의 대다수 연구에서는 수익률의 확률분포를 정규분포라 모형화한 후 VaR을 측정한다. 최근 Chen 등 (2012)은 수익률의 확률분포를 비대칭 라플라스 분포라 모형화하고 VaR을 측정하였기도 하였으나, 비대칭 라플라스 분포의 경우 그 모양을 결정하는 최빈값, 비대칭 정도, 분산정도 등을 실제적인 환경에서 제한된 개수의 데이터를 가지고 추정하기가 매우 어렵다는 단점이 있다. 이 논문에서, 우리는 (대칭) 라플라스 분포 모형이 정규분포 모형이나 비대칭 라플라스 분포 모형보다 실제적인 환경에서 VaR을 보다 더 정확히 추정해 줌을 주식시장의 실제 데이터와 VaR 초과비율, 기대초과손실, VaR초과편차율 등의 통계지표를 도입하여 입증한다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201336161064511 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 라플라스 분포,모수적 방법,비대칭 라플라스 분포,시장위험측정,종합주가지수,Asymmetric Laplacian distribution,KOSPI,Laplacian distribution,parametric estimation,value at risk |