초록 |
본 논문은 차량의 내부 및 외부 정보를 통합하여 운전자의 인지 상태를 측정하고, 안전운전을 보조하여 주는시스템을 제안한다. 구현된 시스템은 운전자의 시선 정보와 외부 영상을 분석하여 얻은 주변정보를 mutual information기반으로 통합하여 구현되며, 차량의 앞부분과 내부 운전자를 검출하는 2개의 카메라를 이용한다. 외부 카메라에서 정보를 얻기 위해 선택적 집중모델을 기반으로 하는 게슈탈트법칙을 제안하고, 이를 기반으로 구현된 saliency map (SM) 모델은 신호등과 같은 중요한 외부 자극을 두드러지게 표현한다. 내부 카메라에서는 얼굴의 특징정보를 이용하여 운전자의 주의가 집중되는 외부 응시 정보를 파악하고 이를 통해 운전자가 응시하고 있는 영역을 검출한다. 이를 위해서 우리는 실시간으로 운전자의 얼굴특징을 검출하는 알고리즘을 사용한다. 운전자의 얼굴을 검출하기 위하여 modified census transform (MCT) 기반의 Adaboost 알고리즘을 사용하였으며, POSIT (POS with ITerations)알고리즘을 통해 3차원 공간에서 머리의 방향과 운전자 응시 정보를 측정하였다. 실험결과를 통하여 제안한 시스템이 실시간으로 운전자의 응시하고 있는 영역과, 신호등과 같은 운전에 도움이 되는 정보를 파악하는데 도움이 되었음을 확인할 수 있으며, 이러한 시스템이 운전보조 시스템에 효과적으로 적용될 것으로 판단된다. |