초록 |
기존 기후변화 영향평가 불확실성 연구들은 거의 대부분 GCM의 불확실성이 가장 크다고 결론내리고 있으나, ES 불확실성과의 정량적 비교는 하지 못했으며, 기존 접근방법은 민감도 분석 수준에 머무르고 있다. 이에 본 연구에서는 기후변화 영향평가 각 단계별 불확실성을 포괄적으로 정량화하고 수행단계별 불확실성의 전파정도를 추정할 수 있는 새로운 approach를 제안하였다. 첫째, 전체 불확실성, 각 단계별 불확실성 증가 정도, 각 단계별 불확실성의 비율을 제시할 수 있는 새로운 approach를 제안하였다. 또한 불확실성을 정량적으로 추정할 수 있는 방법으로 maximum entropy(이하 ME)를 선정하였으며, 이를 본 연구에서 제시한 approach에서 적용성을 살펴보았다. 둘째, 본 연구에서는 기후변화 영향평가 불확실성 단계별 정량화를 위해 2개 배출시나리오, 4개 GCM 시나리오, 2개 상세화기법, 2개 수문모형을 사용하여 기본적 기후변화 영향평가 단계를 모두 수행하였다. 기존 approach에서는 GCMs의 변화율(89.34)이 가장 커 GCMs의 불확실성이 가장 큰 것으로 나타났으나 제시한 approach에서는 배출시나리오의 불확실성이 전체 대비 58.66 %로 기후변화 영향평가에서 가장 큰 불확실성 발생 원인으로 파악되었다. 모형 불확실성에서는 GCMs의 불확실성(전체 대비 33.57 %)이 가장 높게 나타났다. 또한 배출시나리오의 ME는 3.32, GCMs의 ME는 5.22, 상세화기법의 ME는 5.57, 수문모형의 ME는 5.66으로 단계적으로 불확실성이 증가하였다. 다음으로 유량과 강수를 이용하여 불확실성 정량화를 수행하였으며, 강수를 이용한 불확실성 정량화에서는 유량을 이용한 결과와 다르게 배출시나리오 다음으로 상세화기법의 불확실성이 큰 것으로 나타나 어떤 수문변수에 초점을 두느냐에 따라 불확실성 정량화저감 노력 대상이 달라질 수 있음을 제시하였다. 마지막으로 자연변동성에 의한 불확실성이 기후변화 전체 불확실성의 45.47 % 정도로 나타났으며, 이는 미래 기후변화에 의해 발생하는 불확실성이 과거 자연변동보다 2배 이상으로서, 기후변화에 의한 미래전망의 불확실성이 매우 크게 증가한다는 매우 중요한 결과를 제시하였다. |