초록 |
기후모형으로 가장 널리 사용되는 GCM의 불확실성 및 시공간적 편의로 인하여 GCM으로부터 생산된 기상정보를 응용수문분야에서 직접적으로 이용하기 위해서는 상세화 과정이 필수적으로 요구된다. 본 연구에서는 선행연구에서 개발된 비정상성 은닉 마코프 모형(Non-stationary Hidden Markov Chain Model, NHMM)을 기반으로 다지점 공간상관성을 고려할 수 있는 Chow-Liu Tree 알고리즘과 결합하여 유역단위 강우시나리오 상세화 기법(CLT-NHMM)으로 확장하였으며, 낙동강 유역에 적용하여 적용성을 평가하였다. 상관행렬(correlation matrix)을 통한 강우네트워크의 공간상관성 평가결과 유역상관성이 우수하게 모의하는 것을 확인하였으며, 강수의 빈도 및 양적 관점에서 효과적인 모의가 가능하였다. 본 연구에서 제시한 CLT-NHMM 모형은 수자원뿐만 아니라 수문자료를 입력 자료로 하는 농업, 보건, 환경 및 에너지 등 다양한 응용기상분야에 핵심 기술로 활용이 전망된다. |