기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

인공신경망과 RDAPS 자료를 이용한 유입량 예측

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국수자원학회 2009년도 학술발표회 초록집
ISSN ,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 최지안,이경주,김태순,허준행
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2009-01-01
초록 효과적인 저수지 운영을 위해 가장 중요한 절차는 저수지 유입량을 적절하게 모의하는 것이다. 실시간 저수지 운영의 경우 기존의 물리적인 강우-유출현상에 기초한 수학적인 모형을 이용해서 유입량을 예측하는데 한계가 있으므로 인공신경망과 같이 자료의 특성에 기반한 모형이 효율적인 대안이 될 수 있다. 본 연구에서는 인공신경망(Artificial neural network, ANN)을 이용하여 실시간 저수지 운영을 위해 현재시간을 기준으로 3시간 후, 6시간 후, 9시간 후, 12시간 후의 유입량을 예측하였다. 본 연구의 대상지역은 한강수계의 화천댐 유역으로 기상청 수치예보자료인 RDAPS(Regional Data Assimilation and Prediction System)자료 중에서 강우예측자료를 사용하였다. RDAPS 강우예측자료를 이용한 예측값 결과와 비교하기 위해 지점 강우자료를 사용하였으며, 이 지점 강우자료는 화천댐 유역에 있는 AWS, 기상청, 국토해양부의 지점자료을 이용하였다. RDAPS 강우예측값만을 이용한 유입량 예측결과가 과거 12시간 강우 누적값을 이용한 유입량 예측값과 비슷한 정확도를 가지는 것을 알 수 있었으며, 자료의 효율적인 취득을 고려해야만 하는 실시간 운영의 경우, RDAPS 강우예측자료와 인공신경망을 이용한 모형이 충분히 효과적인 대안이 될 수 있음을 알 수 있다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NPAP&cn=NPAP08310284
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 인공신경망,저수지운영,수치에보모형,RDAPS