초록 |
데이터 마이닝닝 기법들 중에서 연관성 규칙 마이닝 (association rule mining)은 대용량의 사건 발생 기록 데이터로부터 항목 간의 연관성을 측정하는 기법이다. 이 기법은 매우 방대한 양의 상품 또는 서비스 거래 기록 데이터로부터 항목들 간의 연관성을 측정하는 기법으로 제조업, 유통업, 보험업, 의료 및 교육 분야 등 많은 분야에 적용되고 있다. 의미 있는 연관성 규칙을 탐색하기 위한 흥미도 측도는 크게 객관적 흥미도 측도와 주관적 흥미도 측도, 그리고 의미론적 흥미도 측도로 분류할 수 있다. 이와는 별개로 기준 확인 또는 증거 지원과 관련된 측도들을 개발하기 위해 많은 시도가 있었으나 기준 확인 측도에 대한 연관성 평가 기준 조건 충족 여부나 기본적인 연관성 평가 측도인 지지도, 신뢰도, 그리고 향상도 등과의 관계는 아직 규명되지 않았다. 이에 본 논문에서는 가장 많이 활용되고 있는 비대칭적 기준 확인 측도에 대해 흥미도 측도의 기준에 대한 조건 충족 여부를 검토하는 동시에 기본적인 연관성 평가 측도들과의 관계를 수식을 통해 유도한 후, 예제를 통해 연관성 규칙의 관점에서 기준 확인 측도의 유용성을 살펴보았다. 그 결과, 본 논문에서 고려한 모든 기준 확인 측도들이 흥미도 측도의 기준에 대한 조건들을 모두 만족하였다. 또한 이들을 기본적인 연관성 평가 기준인 지지도, 신뢰도, 그리고 향상도와의 관계를 식을 통해 규명한 동시에 방향성과 행태적 해석 가능성을 예제를 통해 확인할 수 있었다. 특히 이들 측도 중에서 Kemeny와 Oppenheim이 제안한 측도와 Rips가 제안한 측도가 가장 바람직한 연관성 평가 기준으로 활용할 수 있다는 사실을 확인할 수 있었다. |