기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

분류 기법을 이용한 방광암 재발 예측

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 정보과학회논문지. Journal of KIISE. 데이타베이스
ISSN 1229-7739,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 서동혁,신동문,손호선,김원재,김원태,류근호
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2012-01-01
초록 방광암은 소변에 저장하는 방광에 생기는 악성종양으로, 연령이 증가함에 따라 발생빈도가 점차 증가하게 된다. 본 연구에서는 기존에 잘 알려진 몇 가지 특징 기법과 분류 방법을 이용하여 방광암 재발 예측을 위한 다양한 예측 모형을 생성하였다. 그 다음으로 예측 분류 모형에 대한 분류 정확도를 측정하여 비교 분석함으로서 방광암 재발 위험을 예측하는 데 가장 적합한 모형을 선별하였다. 실험 결과, 특징 선택 기법은 Minimum Redundancy Maximum Relevance(MRMR)이 Conditional Mutual Information Maximization(CMIM)보다 상대적으로 더 높은 정확도를 보였으며, 특히 데이터 객체들로부터 가장 영향을 미치는 10개의 특징을 선택하여 베이지안 네트워크 모형에 적용하였을 때 예측 정확도가 가장 높게 나타났다. 이 연구를 통해 암 재발 위험을 정확히 예측함으로서 향후의 의료진들이 환자의 암 예방 및 예후를 추정하는 데 기여할 수 있을 것으로 기대된다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201222653563397
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 방광암,방광암 재발,특징 선택,분류 방법,bladder cancer,recurrence,feature selection,classification methods