저자(한글) |
Cao, Z.,Dong, E.,Zheng, Q.,Sun, W.,Li, Z. |
초록 |
Deformable image registration remains a challenging research area due to difficulties associated with local intensity variation and large motion. In this paper, an Accurate Inverse-consistent Symmetric Optical Flow (AISOF) method is proposed to overcome these difficulties. The two main contributions of AISOF include the following: (1) a coarse-to-fine strategy for an inverse-consistent symmetric method and (2) a novel Hybrid Local Binary Pattern (HLBP) to the classical Lucas-Kanade optical flow method. The HLBP consists of a median binary pattern and a generalised centre-symmetric local binary pattern. The generalised centre-symmetric local binary pattern has two thresholds, and this pattern can capture more information than the classical centre-symmetric local binary pattern, which has one threshold. The proposed HLBP can cope well with high contrast intensity and local intensity variation. Because the inverse-consistent symmetric method can reduce inverse consistency errors in Markov random fields based registration methods, we adopted this method to improve the accuracy of registration. In addition, a coarse-to-fine strategy was adopted to handle large motion. The proposed AISOF method was evaluated for 10 publicly available 4D CT lung datasets from the DIR-Lab. The mean target registration error of the AISOF method is 1.16mm, which is significantly superior to the error of the classical Lucas-Kanade optical flow method, 2.83mm. Moreover, this error is also the smallest of all unmasked registration methods using these datasets. |