초록 |
복잡하고 비선형적인 시스템의 규칙베이스 퍼지모델링을 위하여 퍼지시스템의 최적 동정알고리즘을 연구한다. 비선형 시스템은 퍼지모델의 입력변수와 퍼지 입력공간 분할에 의한 구조동정과 파라미터 동정을 통해 표현된다. 본 논문에서 규칙베이스 퍼지모델링은 비선형 시스템을 위해 퍼지추론방법과 두 종류의 최적화 이론의 결합에 의한 하이브리드 구졸를 이용하여 시스템 구조와 파라미터동정을 수행한다. 퍼지모델의 추론방법은 간략추론 및 선형추론에 의한다. 제안된 하이브리드 최적 동정 알고리즘은 유전자 알고리즘과 개선된 콤플렉스 방법을 이용한다. 여기서 유전자 알고리즘은 전반부 퍼지규칙의 멤버쉽함수의 초기 파라미터들을 결정하기 위해 사용되고 강력한 자동동조 알고리즘인 개선된 콤플렉스 방법은 정교한 파라미터들을 얻기 위해 수행된다. 따라서 최적 퍼지모델을 위해 전반부 파라미터 동정에는 하이브리드형의 최적 알고리즘을 이용하고 후반부 동정에는 최소자승법을 이용한다. 또한 학습과 테스트 데이터에 의해 생성된 퍼지모델의 성능결과 사이의 상호균형을 얻기 위해 하중계수를 가지는 합성 성능지수를 제안한다. 제안된 모델의 성능평가를 위해 두가지 수치적 예를이용한다. |