초록 |
교통사고 피해를 최소화하기 위해서는 차량과 도로 체계에 대한 공학적인 개선을 통하여 교통사고 원인을 제거해야 한다. 일반적으로 안정성과 효율성이 부족한 도로는 교통사고가 지속적으로 발생할 가능성이 크고 이를 개선하는데 막대한 사회적 비용과 시간이 소요되며, 부적절한 환경 요인으로 발생한 교통사고는 국가적으로 큰 피해를 발생시키게 된다. 따라서 본 연구는 최근 인공지능 분야 중 활발히 연구 중인 역전파 알고리즘(Back-Propagation Algorithm : BPA)을 이용하여 신호교차로를 대상으로 최적의 교통안전 평가기법을 제시하고자 하였다. 본 연구는 광주광역시내 교통혼잡과 교통사고가 빈번하게 발생하고 있는 신호교차로 지점을 대상으로, BPA를 이용하여 보다 신뢰성 높은 교통안전 평가 모형을 개발하고자 다음과 같은 일련의 방법으로 연구를 수행하였다. 첫째, 신호교차로 교통사고와 교통상충간의 순위상관분석을 실시하여 교통사고 순위와 교통상충 순위가 통계적으로 유의함을 확인하였다. 이는 교통상충이 신호교차로 교통안전 평가 변수로 사용될 수 있음에 따라 설명변수로 입력되고 교통사고가 종속변수인 선형회귀모형을 개발하는데 이용하였다. 둘째, 신호교차로의 교통량과 진입 진출 차로수 차이 등을 교통사고의 설명변수로 간주하여 다중회귀분석을 통해 교통사고 예측모형을 개발하였다. 셋째, 교통량과 도로 기하구조 요소를 모형의 설명변수로 설정하고 교통상충을 종속변수로 하여 BPA를 이용한 최적의 교통안전 평가 모형을 개발하였다. 마지막으로, 교통사고 실측값, 다중회귀모형, BPA에 의한 교통사고 예측값을 평균제곱근오차 방법으로 모형의 적합도 비교 분석을 하였다. 본 연구의 결과, BPA에 의해 도출된 교통사고 예측값과 교통사고 실측값 사이의 평균제곱오차는 3.89로 계산되어 BPA가 다중회귀 모형보다 상대적으로 교통안전 평가능력이 우수한 것으로 나타나 실제 신호교차로 교통안전도를 평가하는데 효과적으로 활용될 수 있을 것으로 판단되고 추후, 교통안전정책 수립시 실질적인 도움이 될 것으로 기대된다. |