저자(한글) |
Jin, J.,McKenzie, E.,Fan, Z.,Tuli, R.,Deng, Z.,Pang, J.,Fraass, B.,Li, D.,Sandler, H.,Yang, G.,Sheng, K.,Gou, S.,Yang, W. |
초록 |
Purpose: To denoise self-gated k-space sorted 4-dimensional magnetic resonance imaging (SG-KS-4D-MRI) by applying a nonlocal means denoising filter, block-matching and 3-dimensional filtering (BM3D), to test its impact on the accuracy of 4D image deformable registration and automated tumor segmentation for pancreatic cancer patients. Methods and Materials: Nine patients with pancreatic cancer and abdominal SG-KS-4D-MRI were included in the study. Block-matching and 3D filtering was adapted to search in the axial slices/frames adjacent to the reference image patch in the spatial and temporal domains. The patches with high similarity to the reference patch were used to collectively denoise the 4D-MRI image. The pancreas tumor was manually contoured on the first end-of-exhalation phase for both the raw and the denoised 4D-MRI. B-spline deformable registration was applied to the subsequent phases for contour propagation. The consistency of tumor volume defined by the standard deviation of gross tumor volumes from 10 breathing phases ( sigma;_GTV), tumor motion trajectories in 3 cardinal motion planes, 4D-MRI imaging noise, and image contrast-to-noise ratio were compared between the raw and denoised groups. Results: Block-matching and 3D filtering visually and quantitatively reduced image noise by 52% and improved image contrast-to-noise ratio by 56%, without compromising soft tissue edge definitions. Automatic tumor segmentation is statistically more consistent on the denoised 4D-MRI ( sigma;_GTV = 0.6 cm 3 ) than on the raw 4D-MRI ( sigma;_GTV = 0.8 cm 3 ). Tumor end-of-exhalation location is also more reproducible on the denoised 4D-MRI than on the raw 4D-MRI in all 3 cardinal motion planes. Conclusions: Block-matching and 3D filtering can significantly reduce random image noise while maintaining structural features in the SG-KS-4D-MRI datasets. In this study of pancreatic tumor segmentation, automatic segmentation of GTV in the registered image sets is shown to be more consistent on the denoised 4D-MRI than on the raw 4D-MRI. |