미러영상 특징을 이용한 Joint Bayesian 개선 방법론
기관명 | NDSL |
---|---|
저널명 | 디지털콘텐츠학회 논문지 = Journal of Digital Contents Society |
ISSN | 1598-2009,2287-738x |
ISBN |
저자(한글) | 한성휴,안정호 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2015-01-01 |
초록 | Joint Bayesian 방법론[1]은 2012년 발표된 이후 최근까지 최고 성능을 보이는 거의 모든 얼굴인식 알고리즘에서 이진 분류를 위해 사용되고 있지만, 지금까지 이를 개선한 알고리즘은 2D-JB[2] 외에 거의 발표되지 않았다. 우리는 본 논문에서 주어진 얼굴 영상과 이를 좌우 반전시킨 미러 영상을 함께 고려함으로써 Joint Bayesian 방법론의 성능을 향상시킬 수 있는 방법론을 제안한다. 일반적인 패턴인식에서 결정함수 값이 결정경계 또는 임계치에 가까운 경우 오류가 발생할 확률이 높다. 제안한 방법론은 미러 영상의 특징을 이용하여 결정함수 값을 결정경계로부터 멀어지게 함으로써 오류를 줄이는 방법이다. 우리는 LFW DB를 이용한 실험을 통해 제안한 JB 개선 방법론이 기존 JB 방법론보다 1%이상 높은 인식률을 보임을 입증하였다. LFW DB를 이용한 기존 연구들에서 성능을 1% 높이기 위해 많은 학습데이터가 필요했음을 감안할 때, 제안한 방법론은 큰 의미가 있다고 볼 수 있다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201501256374287 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 얼굴인식,JB 방법론,2차원 JB 방법론,미러영상,LFW 데이터베이스,Face recognition,Joint Bayesian method,2D-JB method,mirror image,LFW DB |