초록 |
나노입자 제조 기술이 점차 발전하면서 금속산화물, 반도체용 및 태양전지용, 신소재 등 다양한 응용분야에 사용하고 있다. 따라서 이와 같은 나노입자 제조방법으로는 펄스 레이저 용사법(pulsed laser ablation), 플라즈마 아크 합성법(plasma arc synthesis), 열분해법(pyrolysis), plasma-enhanced chemical vapor deposition (PECVD)법 등과 같은 기상공정이 많이 사용되고 있다. 기상공정은 기존의 공정에 비해 고순도 입자의 대량 생산, 다성분 입자의 화학적 균질성 유지, 비교적 간단하고 깨끗한 공정 등의 장점을 가지고 있다. 기상공정에서 일반적인 입자 형성 메커니즘은 기체 상태의 화학 물질이 물리적 공정 혹은 화학 반응에 의해 과포화상태에 도달하게 되며, 이 때 동질 핵생성(homogeneous nucleation)이 일어나고 생성된 핵(nuclei)에 기체가 응축되고 충돌, 응집하면서 입자는 성장하게 된다. 열분해법은 실리콘 나노입자를 생산하는 기상공정 중 하나이다. 일반적으로 열분해 공정은 지속적으로 열이 가해지는 반응기 내에 반응기체인 $SiH_4$ 을 주입하고, 운반기체는 He, $H_2$ , Ar, $N_2$ 등을 사용하였을 때, 높은 열로 인해 $SiH_4$ 가 분해되며, 이 때 가스-입자 전환 현상(gas to particle conversion)이 일어나 실리콘 입자가 형성된다. 그러나 입자 형성과정은 $SiH_4$ 농도, 유량, 작동 압력, 온도 등 매우 다양한 요소에 영향을 받는다. 고, 복잡한 화학반응 메커니즘에 의해 명확히 규명되지는 못하고 있다. 이에 본 연구에서는 복잡한 화학반응을 해석하는 상용코드 CHEMKIN 4.1.1을 이용하여 열분해 반응기 내에서의 실리콘 입자 형성, 성장, 응집, 전송 모델을 만들고 이를 수치해석하였다. 표면 반응, 응집, 전송에 의한 입자 성장 메커니즘을 포함하고 있는 aerosol dynamics model을 method of moment법으로 해를 구하였으며, 이를 실험 결과와 비교하여 모델링을 검증하였다. 또한 반응기의 온도, 압력, 가스 농도, 유량 등의 요소를 고려하여 실리콘 나노입자를 형성하는 최적의 조건을 연구하였다. |