초록 |
한반도 영역을 대상으로 RDAPS모형의 수치예보자료, AWS의 관측강수, 상층기상관측(upper-air sounding)의 관측자료를 이용하여 권역별 강수발생확률을 예측할 수 있는 인공신경망 모형을 제시하였다. 사용된 자료의 기간은 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 하였다. 500/750/1000 hPa에서의 지위고도, 500-1000 hPa에서의 층후(thickness), 500 hPa에서의 X와 Y방향 바람성분, 750 hPa에서의 X와 Y방향 바람성분, 표면풍속, 500/750 hPa/표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도등을 신경망의 예측인자로 사용하였다. 신경망의 구조는 3층 MLP(Multi Layer Perceptron)로 구성하여 역전파알고리즘(Back-propagation)을 학습방법으로 사용하였다. 신경망예측결과 한반도전체에 대한 예측성과의 개선은 H가 6.8%상승하였고, 특히 TS와 POD는 각각 99.2%와 148.1% 상승함으로서 강수예측에 대한 신경망모형이 효과적인 도구가 될 수 있음을 확인하였다. KSS 역시 92.8% 개선됨으로서 RDAPS 예측에 비하여 뚜렷이 개선된 결과를 보여주고 있다. |