기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

인공신경망과 중규모기상수치예보를 이용한 강수확률예측

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 大韓土木學會論文集, Journal of the Korean Society of Civil Engineers, B. 수공학, 해안 및 항만공학, 환경 및 생태공학
ISSN 1015-6348,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 강부식,이봉기
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2008-01-01
초록 한반도 영역을 대상으로 RDAPS모형의 수치예보자료, AWS의 관측강수, 상층기상관측(upper-air sounding)의 관측자료를 이용하여 권역별 강수발생확률을 예측할 수 있는 인공신경망 모형을 제시하였다. 사용된 자료의 기간은 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 하였다. 500/750/1000 hPa에서의 지위고도, 500-1000 hPa에서의 층후(thickness), 500 hPa에서의 X와 Y방향 바람성분, 750 hPa에서의 X와 Y방향 바람성분, 표면풍속, 500/750 hPa/표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도등을 신경망의 예측인자로 사용하였다. 신경망의 구조는 3층 MLP(Multi Layer Perceptron)로 구성하여 역전파알고리즘(Back-propagation)을 학습방법으로 사용하였다. 신경망예측결과 한반도전체에 대한 예측성과의 개선은 H가 6.8%상승하였고, 특히 TS와 POD는 각각 99.2%와 148.1% 상승함으로서 강수예측에 대한 신경망모형이 효과적인 도구가 될 수 있음을 확인하였다. KSS 역시 92.8% 개선됨으로서 RDAPS 예측에 비하여 뚜렷이 개선된 결과를 보여주고 있다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO200830265652175
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 인공신경망,역전파알고리즘,강수발생활률