기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 Journal of microbiology and biotechnology
ISSN 1017-7825,1738-8872
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Wang, Liangliang,Wang, Jiajun,Shi, Hao,Gu, Huaxiang,Zhang, Yu,Li, Xun,Wang, Fei
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn 2+ enhanced its enzymatic activity by 79.5%. Three highly conserved residues (Asp 171 , His 254 , and His 271 ) in TtGlyDH were associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA reduction, TtGlyDH showed maximum activity towards glycerol at 60 #8451; and pH 8.0 and towards DHA at 60 #8451; and pH 6.0. DHA reduction was the dominant reaction, with a lower K m(DHA) of 1.08 #xb1; 0.13 mM and V max of 0.0053 #xb1; 0.0001 mM/s, compared with glycerol oxidation, with a K m(glycerol) of 30.29 #xb1; 3.42 mM and V max of 0.042 #xb1; 0.002 mM/s. TtGlyDH had an apparent activation energy of 312.94 kJ/mol. The recombinant TtGlyDH was thermostable, maintaining 65% of its activity after a 2-h incubation at 60 #8451;. Molecular modeling and site-directed mutagenesis analyses demonstrated that TtGlyDH had an atypical dinucleotide binding motif (GGG motif) and a basic residue Arg 43 , both related to dinucleotide binding.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201620836761818
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Dinucleotide binding,glycerol dehydrogenase,molecular modeling,site-directed mutagenesis,Thermoanaerobacterium thermosaccharolyticum