기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

그래프 데이터에 대한 비-중복적 키워드 검색 방법

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국콘텐츠학회논문지 = The Journal of the Korea Contents Association
ISSN 1598-4877,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글)
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 최근 소셜 네트워크, 시맨틱 웹, 바이오 인포매틱스 등 여러 응용 분야에서 그래프 구조를 갖는 대용량 데이터들에 활용됨에 따라 이런 데이터들에 대한 키워드 기반 검색 방법이 많은 관심을 받고 있다. 본 논문에서는 그래프 구조 데이터에 대한 키워드 질의에 대해 질의와 연관성이 높으면서 구조적인 중복성을 갖지 않는 top-k 결과 집합을 효율적으로 검색하는 방법을 제안한다. 키워드 질의에 대한 비-중복적인 결과 트리 구조와 그것의 연관도 척도를 정의하고, 그래프 내에 포함된 유용한 경로 정보들에 대한 효과적인 인덱싱 방법을 제안한다. 그리고 기 생성된 인덱스를 활용하여 주어진 키워드 질의에 대해 비-중복적이면서 연관도가 큰 top-k 결과 집합을 생성하는 효율적인 질의 처리 알고리즘을 제시한다. 실 데이터를 이용한 실험을 통해 제안한 방법의 효과와 성능을 기존 방법과 비교 분석한다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201620340446247
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 그래프 데이터,키워드 검색,Top-k 질의 처리,Graph Data,Keyword Search,Top-k Query Processing