초록 |
일반적인 순차패턴 마이닝에서는 분석 대상 데이터 집합에 포함되는 구성요소의 발생 순서만을 고려하며, 따라서 단순 순차패턴은 쉽게 찾을 수 있는 반면 실제 응용 분야에서 널리 활용될 수 있는 관심도가 큰 순차패턴을 탐색하는데 한계가 있다. 이러한 단점을 보완하기 위한 대표적인 연구 주제들 중의 하나가 가중치 순차패턴 탐색이다. 가중치 순차패턴 탐색에서는 관심도가 큰 순차패턴을 얻기 위해서 구성요소의 단순 발생 순서 뿐만 아니라 구성요소의 가중치를 추가로 고려한다. 본 논문에서는 발생 간격에 기반 한 순차패턴 가중치 부여 기법 및 이를 활용한 순차 데이터 스트림에 대한 가중치 순차패턴 탐색 방법을 제안한다. 발생 간격 기반 가중치는 사전에 정의된 별도의 가중치 정보를 필요로 하지 않으며 순차정보를 구성하는 구성요소들의 발생 간격으로부터 구해진다. 즉, 순차패턴의 가중치를 구하는데 있어서 구성요소의 발생순서와 더불어 이들의 발생 간격을 고려하며, 따라서 보다 관심도가 크고 유용한 순차패턴을 얻는데 도움이 된다. 한편, 근래 대부분의 컴퓨터 응용 분야에서는 한정적인 데이터 집합 형태가 아닌 데이터 스트림 형태로 정보를 발생시키고 있다. 이와 같은 데이터 생성 환경의 변화를 고려하여 본 논문에서는 순차 데이터 스트림을 마이닝 대상으로 고려하였다. |