초록 |
본 논문은 블랙박스 적용을 위한 적응형 히스토그램 스트레칭 알고리즘을 제안하였다. 본 알고리즘은 자동차 개인 저장장치 영상을 이용한 차량 번호판 검출을 위한 전처리 단계로 사용하였다. 제안 방식은 확률밀도함수(PDF: Probability Density Function)와 누적분포함수(CDF: Cumulative Density) 이용하여 영상의 밝기 분포도를 분석하였다. 이 두 함수는 일정한 간격을 두고 샘플링 한 영상을 사용하여 구하였다. 두 함수를 이용하여 영상의 특성을 분석하여, 특정 인자를 검출하였다. 검출된 인자를 분포도에 따라 각각 다른 스트레칭을 수행하였다. 알고리즘 검증은 촬영 된 자동차 개인 저장장치 영상을 사용하였다. 기존 알고리즘 비교는 시각적인 평가, 히스토그램 분포, 표준 및 표준 편차 값을 분석하였다. 또한 시뮬레이션 결과를 자동차 번호판 인식 알고리즘에 적용하여 번호판 인식율을 분석하였다. 기존 알고리즘보다 열화 현상이 적게 나타났고, 향상된 콘트라스트 값을 통하여, 차량 번호판 검출에서 기존 알고리즘보다 정확한 위치가 나타났다. |