명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법
기관명 | NDSL |
---|---|
저널명 | 컴퓨터그래픽스학회논문지 = Journal of the Korea computer graphics society |
ISSN | 1975-7883, |
ISBN |
저자(한글) | 이규현,트란민콴,정원기 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2016-01-01 |
초록 | 본 논문은 명시야 (bright-field) 현미경 영상를 위한 데이터 기반 세포 분할 알고리즘을 제시한다. 제시된 알고리즘은 일반적인 사전 학습 기법과 다르게 동시에 두 개의 사전과 관련된 희소 코드 (sparse code)를 통해 정의된 에너지 함수의 최소화를 진행하게 된다. 두 개의 사전 중 하나는 명시야 영상에 대해 학습된 사전이고 다른 하나는 사람에 의해 수작업으로 세포 분할된 영상에 대해 학습된 것이다. 학습된 두 개의 사전을 세포 분할 될 새로운 입력 영상에 대해 적용하여 이와 관련된 희소 코드를 획득한 후 픽셀 단위의 분할을 진행하게 된다. 효과적인 에너지 최소화를 위해 합성곱 희소 코드 (Convolutional Sparse Coding)와 Alternating Direction of Multiplier Method(ADMM)이 사용되었고 GPU를 사용하여 빠른 분산 연산이 가능하다. 본 연구는 이전에 사용된 가변형 모델 (deformable model)을 이용한 세포 분할 방식과는 다르게 제시된 알고리즘은 세포 분할을 위해 사전 지식이 필요없이 데이터 기반의 학습을 통해서 쉽고 효율적으로 세포 분할을 진행할 수 있다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201623558082818 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 사전 학습,영상 처리,세포 분할,명시야 영상,Dictionary Learning,Image,processing,Cell segmentation,Bright-field image |