초록 |
마그네슘은 스마트폰, 전자기기 케이스, 내화벽돌과 아크용접봉 제조시의 첨가물 등으로 사용되고 있는데, 최근에는 재활용을 위한 마그네슘 용해로를 취급하거나 가공하는 사업장이 증가하고 있어 사고위험성이 높아지고 있다. 금속분을 취급하는 사업장에서의 금속분진은 저장이나 축적 등과 같이 주로 퇴적물로서 존재한다. 퇴적분진의 발화온도는 퇴적물 형상과 두께, 입경, 분위기 가스의 유속, 산소농도, 부유분진의 농도, 퇴적밀도, 수분 등의 많은 영향인자가 관여하기 때문에 이론적 예측이 힘들고 실험적인 측정에 의존할 수 밖에 없는 것이 현실이다. 본 연구에서는 연소성이 높고 화재폭발사고사례가 많은 마그네슘(Mg) 분진을 사용하여 승온속도 변화에 따른 열분해특성을 조사하였다. 퇴적분진의 열적특성을 조사하기 위하여 METTLER TOLEDO의 TGA/DSC1를 사용하였으며, Mg 시료의 평균입경은 38, $142{ mu}m$이다. 입경 $38{ mu}m$의 Mg 시료의 열중량분석 결과, 중량증가는 $400{ sim}500^{ circ}C$의 범위에서 시작되며 $550^{ circ}C$에서 급격하게 중량이 증가하고 있으며, 증량증가개시온도(Temperature of weight gain)는 $460^{ circ}C$에서 시작하여 $900{ sim}950^{ circ}C$ 범위에서 중량 증가 포화값에 도달하였다. 입경 $142{ mu}m$의 Mg에 대하여 공기중 승온속도를 5, 10, $20^{ circ}C/min$으로 변화시키면서 실온에서 $900^{ circ}C$까지 가열 시키는 경우의 시료의 중량 변화에 따른 열분해 특성은 승온속도가 증가할수록 2단계의 S자 곡선은 완만하게 상승을 나타내며 중량증가개시온도가 높아지는 경향을 보이고 있다. 중량증가개시온도가 승온속도에 따라 변화하는 결과를 나타내고는 있지만, 시료량의 증가에 따른 영향을 열중량분석 실험방법의 제약으로 인하여 확인할 수 가 없었다. 그러나 만일 시료량이 크게 증가하는 경우에는 동일한 승온조건에서 중량증가 개시온도는 낮아질 가능성이 있다. 중량증가는 시료의 산화반응에 의한 것이므로 시료량의 증가는 시료 내부에의 열의 축적을 용이하게 하여 보다 낮은 온도에서도 산화반응이 충분히 일어나는 조건이 형성되기 때문이다. 승온속도가 증가할수록 산화 반응한 괴상형태의 연소입자가 크게 증가하고 있는 것을 알 수 있다. 승온속도에 따른 중량개시온도 곡선을 보면 [그림 24]와 같으며 승온속도 5, 10, $20^{ circ}C/min$의 증가에 따라 중량개시온도는 각각 490, 510, $530^{ circ}C$가 얻어졌으며 승온속도의 증가에 따라 중량개시온도가 증가하는 경향을 보이고 있다. |