초록 |
본 연구는 산림에서 나타나는 수종의 분포 패턴을 해석하고 예측하기 위한 목적으로 수행되었다. 국내에서 처음으로 시도된 전국 규모의 체계적 산림조사라 할 수 있는 NFI (National Forest Inventory)의 수종별 출현 정보와 출현지점별 풍부도를 기반으로 소나무의 현존분포도를 작성하였다. 생태적 지위 모형의 하나인 GARP (Genetic Algorithm for Ruleset Production)를 이용하여 소나무 현존분포와 연관성이 높은 환경요인변수들을 선정하였고, 선정된 변수들을 설명변수로 하는 소나무 잠재분포 모형을 작성한 후 기후변화 시나리오를 적용하여 미래의 잠재분포를 예측하였다. 기후, 지리 지형, 토양 지질, 토지이용 및 식생현황 등 27개 환경요인변수를 각각 설명변수로 하여 모형을 구동함으로써 소나무 현존분포와의 연관성을 평가한 결과 1월 평균기온이 최상위를 차지하였고 연평균기온, 8월평균기온, 연교차 등도 영향을 미치는 것으로 분석되었다. NFI 정보로부터 추출하여 소스개체군으로 선정된 조사지점들을 소나무의 최종출현정보로, 환경요인변수 간의 연관성 분석을 통해 최종적으로 선정된 변수 세트를 설명변수로 하여 모형을 구동함으로써 최적의 모형을 선정한 후 잠재분포도를 작성하였다. 현재 시점의 환경요인변수들에 의해 트레이닝 된 잠재분포 모형에서 기후관련변수들을 RCP 8.5 기후변화시나리오에서 산출한 변수들로 대체하여 2020년대, 2050년대, 2090년대의 소나무의 예측 잠재분포도를 작성하였다. 최종적으로 작성된 소나무 잠재분포모형의 평가 통계량인 AUC (Area Under Curve)는 0.67로 다소 미흡하였으나 향후 기후변화 환경 하에서 소나무림의 보전 및 관리를 위한 최소한의 실마리를 제공할 수 있을 것으로 판단되었다. |