AR계수와 SVM을 이용한 뇌파 기반 운전자의 졸음 감지 시스템
기관명 | NDSL |
---|---|
저널명 | 한국지능시스템학회 논문지 = Journal of Korean institute of intelligent systems |
ISSN | 1976-9172, |
ISBN |
저자(한글) | 한형섭,정의필 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2012-01-01 |
초록 | 운전 중 운전자의 졸음은 교통 사망사고를 일으키는 중요한 요인이며 음주운전보다도 더 위험할 수 도 있다. 이러한 이유로 운전자의 졸음을 판별하고 경고하는 시스템 개발이 최근에 매우 중요한 이슈로 떠올랐다. 그중에서도 졸음과 가장 밀접한 관련이 있는 생체 신호 분석이 많이 적용되는데 그중에서도 뇌파(Electroencephalogram, EEG)와 안구전도(Electrooculogram, EOG)를 분석하는 연구가 주류를 이루고 있다. 본 논문에서는 실험 프로토콜를 바탕으로 측정된 뇌파를 주파수별로 분석하여 운전자의 상태별 뇌파 데이터베이스를 구축하였고 선형예측(Linear Predictive Coding, LPC) 계수와 Support Vector Machine(SVM)을 이용한 운전자 졸음 감지 시스템을 제안한다. 실험결과로 졸음의 뇌파분석에서 알파파가 감소하며 세타파가 증가하는 추세를 보였으며, LPC 계수가 각성, 졸음 및 수면상태의 특징을 잘 반영하였다. 특히 제안한 시스템은 적은 샘플(250ms)에서도 96.5%의 높은 분류 결과를 얻어 짧은 순간에 일어날 운전시 돌발 상황을 실시간으로 예측할 수 있는 가능성을 보였다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201214350262323 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 뇌파,졸음운전,선형예측계수,서포트 벡터 머신,신경회로망,EEG,Driver Drowsiness,Linear Predictive Coding,SVM,Neural Network |