태양광 발전량 예측 인공지능 DNN-RNN 모델 비교분석
기관명 | NDSL |
---|---|
저널명 | 사물인터넷융복합논문지 |
ISSN | , |
ISBN |
저자(한글) | 홍정조,오용선,목원대학교,목원대학교 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2022-01-01 |
초록 | 지구 온난화의 주범인 온실가스 감축을 위해 UN은 1992년 기후변화협약을 체결하였다. 우리나라도 온실가스 감축을 위해 재생에너지 보급 확대 정책을 펼치고 있다. 태양에너지를 이용한 재생에너지 개발의 확대는 풍력과 태양광 발전의 확대로 이어졌다. 기상 상황에 영향을 많이 받는 재생에너지 개발의 확대는 전력계통의 수요공급관리에 어려움 이 발생하고 있다. 이러한 문제를 해결하기 위해 전력중개시장을 도입하게 되었다. 따라서 전력중개시장 참여를 위해서 는 발전량 예측이 필요하다. 본 논문에서는 자체 개발한 예측 시스템을 활용하여 연축태양광발전소에 대하여 분석하였 다. 현장 일사량(모델 1)과 기상청 일사량(모델 2)을 적용한 결과 모델 2가 3% 정도 높은 것을 확인하였다. 또한, DNN 과 RNN 모델을 비교 분석한 결과 DNN 모델이 예측 정확도가 1.72% 정도 향상되는 것을 확인하였다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=ART002855199 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) |