기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Endpoint에 적용 가능한 정적 feature 기반 고속의 사이버 침투공격 분석기술 연구

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 Journal of Internet Computing and Services = 인터넷정보학회논문지
ISSN 1598-0170,2287-1136
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 황준호,황선빈,김수정,이태진
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2018-01-01
초록 사이버 침해공격은 사이버 공간에서만 피해를 입히는 것이 아니라 전기 가스 수도 원자력 등 인프라 시설 전체를 공격할 수 있기에 국민의 생활전반에 엄청난 피해를 줄 수 있다. 또한, 사이버공간은 이미 제5의 전장으로 규정되어 있는 등 전략적 대응이 매우 중요하다. 최근의 사이버 공격은 대부분 악성코드를 통해 발생하고 있으며, 그 숫자는 일평균 160만개를 넘어서고 있기 때문에 대량의 악성코드에 대응하기 위한 자동화된 분석기술은 매우 중요한 의미를 가지고 있다. 이에 자동으로 분석 가능한 기술이 다양하게 연구되어 왔으나 기존 악성코드 정적 분석기술은 악성코드 암호화와 난독화, 패킹 등에 대응하는데 어려움이 있고 동적 분석기술은 동적 분석의 성능요건 뿐 아니라 logic bomb 등을 포함한 가상환경 회피기술 등을 대응하는데 한계가 있다. 본 논문에서는 상용 환경의 Endpoint에 적용 가능한 수준의 가볍고 고속의 분석성능을 유지하면서 기존 분석기술의 탐지성능 단점을 개선한 머신러닝 기반 악성코드 분석기술을 제안한다. 본 연구 결과물은 상용 환경의 71,000개 정상파일과 악성코드를 대상으로 99.13%의 accuracy, 99.26%의 precision, 99.09%의 recall 분석 성능과, PC 환경에서의 분석시간도 초당 5개 이상 분석 가능한 것으로 측정 되었고 Endpoint 환경에서 독립적으로도 운영 가능하며 기존의 안티바이러스 기술 및 정적, 동적 분석 기술과 연계하여 동작 시에 상호 보완적인 형태로 동작할 것으로 판단된다. 또한, 악성코드 변종 분석 및 최근 화두 되고 있는 EDR 기술의 핵심요소로 활용 가능할 것으로 기대된다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201835372349718
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 악성코드,정적분석,기계학습