초록 |
본 논문은 목적이 네 개 이상인 고도 다목적 문제(many-objective problem)에서의 의사 결정을 위한 새로운 이중(two-tier) 최적화 접근법을 제안한다. 목적의 개수가 증가할수록, 특히 네 개 이상부터는, 전체해(solution) 중에서 파레도 최적해(Parero-optimal solution)가 차지하는 비율이 기하급수적으로 증가한다. 그래서 일반 다목적 문제와는 달리, 의사 결정을 하는데 단순히 파레토 최적 해만을 찾는 것으로는 충분하지 않고, 찾은 파레토 최적 해들 중에서도 상대적으로 좀 더 선호하는 해들을 가려내는 것이 필요하다. 제안하는 접근법에서는 추가적인 최적화 단계를 추가함으로써 사용자의 선호도를 균형있게 반영하는 방향으로 파레토 최적해들을 찾는다. 이러한 2차 최적화는 관련된 2차 목적들을 수반하게 되는데, 2차 목적으로는 광역평가값과 혼잡 거리를 사용하였다. 광역평가값과 혼잡 거리는 각각 사용자의 선호도와 다양성을 대변하는 척도이다. 제안한 접근법의 우수성을 보이기 위해서는 잘 알려진 검증 함수들을 활용하는데, 같은 함수에 대해 제안한 접근법을 적용한 경우와 적용하지 않은 경우의 결과를 비교한다. 제안한 접근법을 적용함으로써 기존보다 사용자의 선호도를 잘 반영하면서 동시에 우수하고 다양한 의사 선택이 가능하다. |