기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

A hierarchical local region-based sparse shape composition for liver segmentation in CT scans

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 Pattern recognition
ISSN 0031-3203,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Shi, C.,Cheng, Y.,Liu, F.,Wang, Y.,Bai, J.,Tamura, S.
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 Motivated by the goals of improving segmentation of challenging liver cases containing low contrast with neighboring organs and presence of pathologies as well as highly varied shapes between subjects, a novel framework is presented for liver segmentation in portal phase of abdominal CT images. In a first training step, we describe a multilevel local region-based Sparse Shape Composition (SSC) model, called MLR-SSC, to increase the flexibility of shape prior models and capture the detailed local shape information more faithfully. Specifically, the liver shapes are decomposed into multiple regions in a multilevel fashion. Moreover, we build a local shape repository for each region and refine an input shape in a region-by-region manner. In a second testing step, it starts with a blood vessel-based liver shape initialization to derive a more patient-specific initial shape, followed by a hierarchical deformable shape optimization algorithm. It makes the segmentation framework more efficient and robust to local minima. Extensive experiments on 60 clinical CT scans demonstrate that our method achieves much better accuracy and efficiency than two closely related methods in the presence of small training sets. Moreover, our method shows slightly superior performance to three newly published methods. Also, we compare our method with the published semi-automatic methods from the ''MICCAI 2007 Grand Challenge'' workshop.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=NART73324592
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Liver segmentation,Active shape model,Sparse shape composition,Shape segmentation,Hierarchical model