기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

효율적인 유전 알고리즘을 활용한 요격미사일 할당 및 교전 일정계획의 최적화

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 산업경영시스템학회지 = Journal of society of Korea industrial and systems engineering
ISSN 2005-0461,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 이대력,양재환
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 This paper considers the allocation and engagement scheduling problem of interceptor missiles, and the problem was formulated by using MIP (mixed integer programming) in the previous research. The objective of the model is the maximization of total intercept altitude instead of the more conventional objective such as the minimization of surviving target value. The concept of the time window was used to model the engagement situation and a continuous time is assumed for flying times of the both missiles. The MIP formulation of the problem is very complex due to the complexity of the real problem itself. Hence, the finding of an efficient optimal solution procedure seems to be difficult. In this paper, an efficient genetic algorithm is developed by improving a general genetic algorithm. The improvement is achieved by carefully analyzing the structure of the formulation. Specifically, the new algorithm includes an enhanced repair process and a crossover operation which utilizes the idea of the PSO (particle swarm optimization). Then, the algorithm is throughly tested on 50 randomly generated engagement scenarios, and its performance is compared with that of a commercial package and a more general genetic algorithm, respectively. The results indicate that the new algorithm consistently performs better than a general genetic algorithm. Also, the new algorithm generates much better results than those by the commercial package on several test cases when the execution time of the commercial package is limited to 8,000 seconds, which is about two hours and 13 minutes. Moreover, it obtains a solution within 0.13~33.34 seconds depending on the size of scenarios.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201620855543246
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Genetic Algorithm,Weapon Target Allocation Problem,Mixed Integer Programming,Optimization,Interceptor Missile