기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 콘크리트학회논문집 = Journal of the Korea concrete institute
ISSN 1229-5515,2234-2842
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 최현기,배백일,구해식
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2015-01-01
초록 본 연구는 섬유보강 콘크리트의 실무 적용을 위한 성능 평가에 대해 재료 시험으로 낭비되던 시간과 노력을 최소화하고 적용에 있어서의 이론적인 배경을 확보하기 위해, 기존의 가이드라인 및 시험 기준에 따른 실험 결과의 수집과 통계적 분석을 통한, 콘크리트의 압축강도에 기반한 주요 특성들을 특정하기 위해 수행되었다. 섬유보강콘크리트는 다양한 변수에 영향을 받게 되므로 이론적인 접근이 어려운 측면이 있어 본 연구에서는 현재 실무에서 다방면으로 사용되고 있는 100MPa 이하의 압축강도를 가지는 콘크리트를 중심으로 0.25%에서 2% 사이의 강섬유 혼입량에 대한 압축강도와 인장강도 시험을 수행하였다. 인장강도 시험은 표준기관에서 정하고 있는 시험방법인 쪼갬인장강도와 휨인장강도에 대해 수행하였다. 섬유보강콘크리트의 재료시험 결과 쪼갬인장강도와 휨인장강도 모두 압축강도의 증가에 따라 증가하는 추세를 보였으며 강도의 증진률은 압축강도 증가와 함께 감소하는 추세를 보였다. 또한섬유의 혼입량 증가는 인장강도의 증가를 유발하는 것을 확인할 수 있었으며, 압축강도 증가에 따른 인장강도 증진률 감소를 막아 콘크리트 압축강도 증가에 선형적으로 인장강도가 증가하도록 해주는 것을 확인할 수 있었다. 기존 연구들로부터 구축한 데이터베이스를 통한 섬유보강콘크리트의 기계적 성질에 대한 검토를 수행하였다. 다양한 변수에 따른 인장강도의 추정을 위해 인공신경망을 적용하였다. 인공신경망은 multi layer perceptron으로 구성하였으며 전달함수로는 sigmoid 함수를 사용하였고 역전파 알고리즘을 통해 학습을 수행하였다. 인공신경망을 사용한 콘크리트 인장강도의 추정 결과 시험 결과와 추정결과가 유사하게 나타나는 것을 확인할 수 있었다. 인공신경망에서 결합력이 큰 변수들은 물-시멘트비와 섬유의 혼입량으로 나타났으며 섬유보강콘크리트의 인장강도는 물-시멘트비에 영향을 받는 압축강도와 혼입량을 통해 추정할 수 있을 것으로 판단된다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201526650062030
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 섬유보강 콘크리트,배합비,압축강도,인장강도,인공신경망,Steel Fiber reinforced Concrete,mix proportion,compressive strength,tensile strength,artificial neural network