오차분포거리의 반복적 계산에 의한 결정궤환 알고리듬
기관명 | NDSL |
---|---|
저널명 | 한국산학기술학회논문지 = Journal of the Korea Academia-Industrial cooperation Society |
ISSN | 1975-4701,2288-4688 |
ISBN |
저자(한글) | |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2015-01-01 |
초록 | 정보이론적 학습의 한 성능기준인 두 오차확률분포간 유클리드거리(MEDE)는 비선형 (결정 궤환, DF) 등화 알고리듬에 채택되었고 심각한 채널 왜곡과 충격성 잡음이 있는 환경에서 탁월한 성능을 보였다. 그러나 이 MEDE-DF 알고리듬은 과중한 계산 복잡성이라는 문제를 지니고 있다. 이 논문에서는 MEDE-DF 알고리듬을 위한 반복적 ED를 먼저 유도하고 그 다음 전후방 영역에 대해 가중치 기울기를 반복적으로 추정하는 식을 유도하였다. MEDE-DF 알고리듬의 반복적 기울기 추정방식의 효과를 입증하기위해 곱셈 계산량을 비교하였고 충격성 잡음과 수중 통신 환경에서 모의 실험한 MSE 성능 결과를 비교하였다. 제안한 DF 방식과 기존의 MEDE-DF 알고리듬의 곱셈 계산량 비는 샘플사이즈 N 에 대해 $2(9N+4):2(3N^2+3N)$ 로 나타나면서도 충격성 잡음과 수중통신 채널환경에서 동일한 MSE 학습 성능을 유지하였다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201519262930708 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | Decision feedback,Computational complexity,Error distribution,Euclidean distance,Recursive Gradient,Impulsive noise |