기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Single seed delineation of brain tumor using multi-thresholding

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 Information sciences
ISSN 0020-0255,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Banerjee, S.,Mitra, S.,Uma Shankar, B.
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 A novel two-stage region of interest (ROI) segmentation is proposed for detecting glioblastoma multiforme (GBM) tumors from brain magnetic resonance images (MRIs). The method involves multi-level thresholding followed by post-processing. Initially discrete curve evolution (DCE) identifies multiple intervals around the significant (or visually critical) points, with a threshold being selected in each such interval using Otsu's method or Li and Lee's entropy. Next a post-processing on the segmented image, based on connected-component analysis and flood-fill operation, helps to extract each refined ROI around a single seed inserted by the user. The segmented ROI is more accurate, both quantitatively and qualitatively, as compared to related methods - inspite of using only a single seed. This is evaluated (i) visually, (ii) in terms of the Jaccard and Dice indices (on the ROI), and (iii) over time complexity of the algorithm. The experimental results on contrast enhanced T1-weighted MRI slices of 25 patients, each having the corresponding ground truth about the tumor regions, establish the effectiveness of our algorithm.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=NART73793460
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) MRI,GBM,Thresholding,Discrete curve evolution (DCE),Supervised and unsupervised segmentation