기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

제약하의 예측조합 방법을 활용한 산업별 고용비중 예측

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국융합학회논문지 = Journal of the Korea Convergence Society
ISSN 2233-4890,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글)
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2020-01-01
초록 본 연구는 우리나라 수출 분야의 산업별 고용비중을 다양한 머신러닝 기법을 활용하여 예측하고, 예측성능을 높이기 위하여 머신러닝 기법 예측값들에 예측조합 기법을 적용하였다. 특히, 본 연구에서는 각 머신러닝 기법 예측값들에 부여되는 가중치의 합을 1로 설정하는 제약하의 예측조합 기법을 사용하여 예측의 정확성과 안정성을 확보하고자 하였다. 또한, 본 연구는 산업별 고용비중에 영향을 주는 다양한 변수를 고려하기 위하여 재귀적특성제거 방법을 사용하여 주요 변수를 선별한 후, 머신러닝 기법에 적용함으로써 예측과정 상에서의 효율성을 높였다. 분석결과, 예측조합 방법에 따른 예측값은 머신러닝 기법의 예측값들보다 실제의 산업 고용비중에 근접한 것으로 나타났으며, 머신러닝 기법의 예측값들이 큰 변동성을 보이는 것과 달리 제약하의 예측조합 기법은 안정적인 예측값을 나타내었다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO202034352378970
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 머신러닝,예측,예측조합,정규화,재귀적특성제거