기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Modeling background error covariance in regional 3D-VAR

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 氣象科學 = Scientia meteorologica sinica
ISSN 1009-0827,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Cao, Xiaoqun,Huang, Sixun,Zhang, Weimin,Du, Huadong
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2008-01-01
초록 Background error covariance (B) is an important part in variational data assimilation (Var), which affects the analyses from Var systems greatly. Because the computation and specification of statistics for B needs great data storage and expensive computations, it's difficult to perform related research. The present paper at first clarifies the importance of B and the necessity of modeling it. Then the principle and computation steps for American NMC method are introduced in detail and used to demonstrate how to apply it in the regional 3D-Var. Thereafter the statistics of background error covariance are computed by using the forecast data set from WRF model. The results indicate that: making use of balance transforms and regression coefficients, control variables are kept to be small values'which ensure the quality of analyses. The first global eigenvector has the maximum component nearby 200hPa, where the error of westerly jet exists. There is negative correlation between low and middle-high levels of first five global eigenvectors of stream function. Compared to lengthscales of stream function and unbalanced velocity potential, those of unbalanced temperature and relative humidity are very small, which show that they are local variables. Lengthscales of stream function and unbalanced velocity potential decrease with the number of vertical mode, while those of unbalanced temoerature and relative humidity vary smoothly.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=NART51720846
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Variational data assimilation,Background error covariance,WRF model