저자(한글) |
Park, Ji-Suk,Lee, Min-Jin,Lee, Seo-Youn,Kim, Jong-Sung,Lee, Tae-Kyu,Ro, Hee-Myong |
초록 |
We evaluated the effect of mixed liquid fertilizer (MLF) on growth responses of plants and soil chemical properties. A pot experiment with red pepper (Capsicum annuum L.) using loam soil was conducted for 81 days in a temperature-controlled glasshouse, and four N fertilization treatments were laid out in a completely randomized design with three replicates: control (C), chemical fertilizer treatment (CF), and two rates (MLF-0.5 and MLF-1.0) of MLF treatment. Soils were periodically sampled and analyzed for pH, EC(Electrical Conductivity), total N, inorganic N and total C, and some growth characteristics of red peppers were measured. During the experimental periods, the pH of MLF soils was higher than that of CF soils. Soil EC increased right after application of CF or MLF, and the intial increase persisted in CF and MLF soils at the end of experiment. Soil total-N increased right after application of CF or MLF, and this initial increase persisted only in MLF-1.0 soils. Soil inorganic N content initially increased in CF or MLF-1.0 soils, but the initial increase disappeared in 56 days after transplanting. Soil total-C was maintained higher in MLF-1.0 soils and lower in CF soils than in control soils, and the intial increase in MLF-1.0 soils finally disappeared to the level of control soils. Plant height, dry weight of plant organs (shoots, roots and fruit), and the number, diameter and length of red pepper fruits were greatest in CF plants. On the other hand, the effect of MLF-application was different depending on the rate of application. However, no consistent effect of N treatments on some major elements of the organs of red peppers was observed. The amounts of N taken up by plants were 1.3 g for CF, 0.8 g for MLF-1.0, 0.5 g for MLF-0.5 and 0.4 g for control treatments. The results of this study showed that mixed liquid fertilizer (MLF) could appropriately serve as an alternative to chemical N fertilizer in red pepper cultivation. |