딥러닝 분석을 이용한 중국 역내·외 위안화 변동성 예측
기관명 | NDSL |
---|---|
저널명 | 한국데이터정보과학회지 = Journal of the Korean Data Information Science Society |
ISSN | 1598-9402, |
ISBN |
저자(한글) | 이우식,전희주 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2016-01-01 |
초록 | 2008년 글로벌 금융위기 이후 중국은 위안화 국제화의 점진적 추진을 진행하면서 중국상하이 외환시장과 중국홍콩 외환시장에서 거래되는 통화인 역내위안화와 역외위안화를 형성시켰다. 본 연구는 위안화 국제화와 점진적인 중국 자본계정 개방에 따라 급변하는 외환시장상황의 변동성을 정확하게 파악하기 위해서 GARCH모형 (일반화된 자기회귀 조건부이분산성모형)에 다단계인공신경망을 결합한 MLP-GARCH 모형과 GARCH모형과 기계학습의 일종인 딥러닝 (deep learning)을 통합한 DL-GARCH을 가지고 위안화 변동성예측을 비교 실험과 분석을 하였다. 비교분석 결과 DL-GARCH 모형은 MLP-GARCH보다 모형 위안화 역내 외 환율변동성 예측 면에서 더욱 더 개선된 예측값을 제공하였다. 그래서 이분산시계열모형을 딥러닝과 결합한 DL-GARCH 모형은 시계열의 환율 변동성 예측 문제에 딥러닝을 응용할 수 있음을 확인하였다. 향후 이분산시계열과 결합된 딥러닝 모형은 다른 금융시계열 데이터에 응용하여 그 일반화 가능성을 높일 수 있을 것이다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201611962057536 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 딥러닝,위안화,인공신경망,환율 변동성 예측,GARCH모형,Deep learning,DL-GARCH,GARCH,The Chinese Yuan,volatility |