기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Assessing the Benefits of Incorporating Rainfall Forecasts into Monthly Flow Forecast System of Tampa Bay Water, Florida

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers
ISSN 1738-3692,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Hwang, Sye-Woon,Martinez, Chris,Asefa, Tirusew
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2012-01-01
초록 지속가능한 수자원 관리 시스템을 위한 수문 예측은 안정적인 장단기 용수 공급에 있어 중요한 과제이며, 이를 위해는 다양한 기후 정보를 이용한 시스템의 평가가 우선되어야 한다. 본 연구에서는 미국 플로리다 템파 지역의 연간 월 강우와 하천 유량 예측을 위해 본 시험지역에 운용되고 있는 유량 모의 시스템 (flow modeling system, FMS)을 소개하고, 관측된 강우 자료를 '최적 예측 강우 시나리오 (the best rainfall forecast)'로 가정하여 FMS의 기후 예측 정보에 대한 활용성을 평가하였다. 연구 결과, 기본적으로 FMS에 의해 예측된 월 강우량 앙상블의 중앙값이 관측 강우량을 잘 재현하는 것으로 나타났다. 강우 예측 모델 입력자료로 사용되는 초기 월 강우량은 2개월까지의 예측에 간섭하며 이 후 예측치는 동일한 범주로 수렴하여 관측자료로 부터 추정된 통계치에 의존하는 것으로 나타났다. 이는 예측 모델이 최대 2개월간의 예측 효용성을 가짐을 의미한다. 월 강우량 앙상블을 이용하여 예측된 하천 유량 앙상블은 4-6개월까지의 예측 효용성을 보였다. 예측된 강우량 대신 실제 관측 월강우 시계열 자료를 유량 예측을 위한 강우 입력자료로 적용한 결과, 예측된 유량의 범주가 현저히 감소하였으며 예측의 불확실성이 감소하는 것으로 나타났다. 본 연구 결과는 시험 지역에 대한 신뢰도 높은 강우 예측 자료의 확보가 기존의 수문 예측 시스템 개선에 기여할수 있다는 것을 보여준다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201225067513489
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Tampa Bay,flow modeling system (FMS),stochastic rainfall forecast,monthly flow forecast