유전 알고리즘을 이용한 국소가중회귀의 다중모델 결합을 위한 점진적 앙상블 학습
기관명 | NDSL |
---|---|
저널명 | 정보처리학회논문지. KIPS transactions on software and data engineering. 소프트웨어 및 데이터 공학 |
ISSN | 2287-5905, |
ISBN |
저자(한글) | 김상훈,정병희,이건호 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2018-01-01 |
초록 | 전통적으로 나태한 학습에 해당하는 국소가중회귀(LWR: Locally Weighted Regression)모델은 입력변수인 질의지점에 따라 예측의 해를 얻기 위해 일정구간 범위내의 학습 데이터를 대상으로 질의지점의 거리에 따라 가중값을 달리 부여하여 학습 한 결과로 얻은 짧은 구간내의 회귀식이다. 본 연구는 메모리 기반학습의 형태에 해당하는 LWR을 위한 점진적 앙상블 학습과정을 제안한다. LWR를 위한 본 연구의 점진적 앙상블 학습법은 유전알고리즘을 이용하여 시간에 따라 LWR모델들을 순차적으로 생성하고 통합하는 것이다. 기존의 LWR 한계는 인디케이터 함수와 학습 데이터의 선택에 따라 다중의 LWR모델이 생성될 수 있으며 이 모델에 따라 예측 해의 질도 달라질 수 있다. 하지만 다중의 LWR 모델의 선택이나 결합의 문제 해결을 위한 연구가 수행되지 않았다. 본 연구에서는 인디케이터 함수와 학습 데이터에 따라 초기 LWR 모델을 생성한 후 진화 학습 과정을 반복하여 적절한 인디케이터 함수를 선택하며 또한 다른 학습 데이터에 적용한 LWR 모델의 평가와 개선을 통하여 학습 데이터로 인한 편향을 극복하고자 한다. 모든 구간에 대해 데이터가 발생 되면 점진적으로 LWR모델을 생성하여 보관하는 열심학습(Eager learning)방식을 취하고 있다. 특정 시점에 예측의 해를 얻기 위해 일정구간 내에 신규로 발생된 데이터들을 기반으로 LWR모델을 생성한 후 유전자 알고리즘을 이용하여 구간 내의 기존 LWR모델들과 결합하는 방식이다. 제안하는 학습방법은 기존 단순평균법을 이용한 다중 LWR모델들의 선택방법 보다 적합도 평가에서 우수한 결과를 보여주고 있다. 특정지역의 시간 별 교통량, 고속도로 휴게소의 시간별 매출액 등의 실제 데이터를 적용하여 본 연구의 LWR에 의한 결과들의 연결된 패턴과 다중회귀분석을 이용한 예측결과를 비교하고 있다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201831446781905 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 국소가중회귀분석,다중 모델의 선택,점진적 앙상블 학습,유전알고리즘 |