기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

유전 알고리즘 기반의 비정상 행위 탐지를 위한 특징선택

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국융합학회논문지 = Journal of the Korea Convergence Society
ISSN 2233-4890,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 서재현
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2018-01-01
초록 데이터 전처리 기법 중 하나인 특징 선택은 대규모 데이터셋을 다루는 다양한 응용분야에서 주요 연구 분야 중 하나로 각광받고 있다. 특징 선택은 패턴 인식, 기계학습 및 데이터 마이닝에서 사용됐고, 최근에는 텍스트 분류, 이미지 검색, 침입 탐지 및 게놈 분석과 같은 다양한 분야에 널리 적용되고 있다. 제안 방법은 메타 휴리스틱 알고리즘 중의 하나인 유전 알고리즘을 기반으로 한다. 특징 부분 집합을 찾는 방법은 크게 필터(filter) 방법과 래퍼(wrapper) 방법이 있는데, 본 연구에서는 최적의 특징 부분 집합을 찾기 위해 실제 분류기를 사용한 평가를 하는 래퍼 방법을 사용한다. 실험에 사용한 훈련 데이터셋은 클래스 불균형이 심하여 희소클래스에 대한 분류 성능을 높이기 어렵다. SMOTE 기법을 적용한 훈련 데이터셋을 사용하여 특징 선택을 하고 다양한 기계학습 알고리즘을 사용하여 선택한 특징들의 성능을 평가한다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201823954939836
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 침입탐지,기계학습,유전알고리즘,특징선택,주성분 분석