분류 모형 구축에 유용한 신뢰도 측도 간의 비교
기관명 | NDSL |
---|---|
저널명 | 한국데이터정보과학회지 = Journal of the Korean Data Information Science Society |
ISSN | 1598-9402, |
ISBN |
저자(한글) | |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2014-01-01 |
초록 | 데이터 마이닝 기법 중에서 연관성 규칙은 하나의 거래나 사건에 포함되어 있는 항목들의 관련성을 파악하기 위한 탐색적 자료 분석 방법이다. 이 기법은 지지도, 신뢰도, 향상도 등과 같은 흥미도 측도들을 이용하여 연관성 규칙을 생성한다. 일반적인 연관성 규칙에서는 최소 지지도를 만족하는 빈발항목집합을 생성한 후 최저 신뢰도를 만족하는 것을 연관성 규칙으로 채택하게 된다. 이 때 규칙 여부를 결정하기 위해 가장 많이 사용되는 신뢰도는 고려하는 항목의 순서가 바뀌게 되면 그 값이 달라지는 비대칭적 측도가 되는 동시에 항상 양의 값을 가진다. 따라서 신뢰도 값의 크기로는 양의 연관성이 있는지, 아니면 음의 연관성이 있는지를 알 수 없다. 본 논문에서는 이러한 문제를 극복하기 위해 분류 모형 구축에 유용한 신뢰도 측도들을 소개하고, 신뢰도들 간의 비교 분석을 통해 유용성을 평가하였다. 그 결과, 인과적 확인 신뢰도가 연관성의 방향을 보다 정확하게 나타내고 있다는 사실을 확인 하였다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201411560023376 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 연관성 규칙,인과적 신뢰도,인과적 확인 신뢰도,확인적 신뢰도,흥미도 측도,Association rule,causal confidence,causal confirmed confidence,confirmed confidence,data mining |