분류 오류 최소화를 위한 클러스터링 기법
기관명 | NDSL |
---|---|
저널명 | 韓國컴퓨터情報學會論文誌 = Journal of the Korea Society of Computer and Information |
ISSN | 1598-849x,2383-9945 |
ISBN |
저자(한글) | 허경용,김성훈 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2014-01-01 |
초록 | 클러스터링은 대표적인 비교사 학습 방법의 하나로 균일한 특성을 가지는 데이터를 군집으로 묶기 위해 사용된다. 균일한 특성을 가지는 데이터 부분집합을 문맥으로 정의하고 문맥 내에서 국부적으로 분류를 행하는 융합 방법이 사용되고 있지만 클러스터링은 비교사 학습 방법이라는 한계로 인해 클러스터링 결과로 만들어지는 문맥이 분류에 있어 최선임을 보장하기 어렵다. 이 논문에서는 생성된 클러스터를 문맥으로 가정하고 각 문맥에서 분류를 시행하는 경우 최소의 오류를 보일 수 있는, 분류를 고려한 클러스터링 기법을 제안한다. 제안하는 방법은 선형 판별 분석에서와 유사하게 클러스터 내 동일한 클래스에 속하는 데이터 쌍은 작은 거리 값을, 서로 다른 클래스에 속하는 데이터 쌍은 큰 거리 값을 가지도록 하기 위한 제약 조건을 적용하여 분류 오류를 줄이도록 하였다. 제안한 방법의 실효성은 실험 결과를 통해 확인할 수 있다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201424635079928 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 클러스터링,교사 클러스터링,문맥,분류,Clustering,Supervised clustering,Context,Classification |