초록 |
Probability based design(PBD)method has some advantages against current design methods. First, it can provide the quantitative values for the structural safety or capacity through the reliability index, $^{ beta}$ . That presented the certainty on the corresponding structure for the designer or user, also that permitted the broad consideration in the safety of structures. In addition, it can give the quantitative lifetime of the related structure in the calculation process of target reliability index. Also, incidental economical efficiency can be expected because decrease of required structural material can be obtained by using the practical material data. Unlikely current deterministic structural design methods, main advantage is the reflection of real condition in the structural design process by application of the data with not small clear specimen but structural size material. Advanced countries, namely America, Canada, Europe, Australia and New Zealand already converted from allowable stress design(ASD) method to PBD method and used as a standard wooden structures code in the late 1980s and 1990s. Other domestic constructions standards such as the steel or concrete constructions accepted and used the PBD methods already. Accordingly, wooden structural design method also should be converted from deterministic ASD to probabilistic LRFD(Load and resistance factor design) in order to keep pace with worldwide demands for PBD. Hence, to suggest the reason of introduction the PBD in domestic wooden structural design and analysis, a brief example was used to show the different reliability index by using the different design methods. Definition, merits and demerits of deterministic ASD and probabilistic LRFD were followed. Also the three examples were presented to show the similarity and differences between ASD and LRFD. Finally, connection problems that might cause a disputation in wooden structural design and analysis were broadly examined. |